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1. Introduction

The natural frequencies of vibrating annular plates have been reported in numerous sources [1-
6]. Invariably a table is presented, with core radii b (normalized by the plate diameter) ranging
from 0.1 to 0.9. Smaller core radii are not treated as numerical techniques suffer from severe
scaling problems.
The fundamental frequency (below which no vibration would occur) corresponds in general to

the axisymmetric mode with no nodal diameter, except for the plate with both edges free, which
vibrates with two nodal diameters. It has been noted, however, that the fundamental frequency
may switch from no nodal diameter to one as the core radius is decreased for annular plates with
their inner edge either clamped or simply supported and the outer edge free [7-9]. The non-
axisymmetric fundamental mode of vibration for annular plates with very small-sized supported
cores was not recognized by Olhoff [10] as evidence from his assumption of an axisymmetric
vibration mode when seeking the optimal design of a centrally supported plate for maximum
fundamental frequency. The analytical nature of the clamped-free annular plate case was first
studied by Southwell [11], who employed asymptotic expansions as b shrinks to zero. It was found
that the frequency rises singularly from zero for small b.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The purpose of the present study is to examine the fundamental frequencies of vibrating
annular plates with small cores, especially for b less than 0.1 where hardly any frequency values
are reported. As small core problems are important in situations such as the control of vibrations
by bolting or nailing the interior of a plate, this study will answer the following questions: Is the
fundamental frequency finite or zero as b ! 0? What is the frequency for small but finite b? At
what core radius does the mode switches from a non-axisymmetric mode to an axisymmetric one?
How does the boundary conditions and the Poisson ratio affect this transition core radius?
2. Formulation

Consider a thin, annular plate with constant thickness h, outer radius R and inner radius bR.
The plate will be modeled using the classical thin plate theory. In carrying out the free vibration
analysis of the annular plate, the transverse displacement can be separated as w(r)cos(ny)eiot

where r is the radial distance normalized by R, n is the number of nodal diameters, o is the
angular frequency, and w is the transverse displacement and it is given by a linear combination of
the Bessel functions JnðkrÞ;Y nðkrÞ; InðkrÞ;KnðkrÞ: Here k � Rðrho2=DÞ

1=4 where r is the mass
density and D is the flexural rigidity [2]. The normalized radial bending moment is
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The boundary conditions considered are clamped (C), simply supported (S), or free (F). There
are therefore nine combinations of boundary conditions for the inner and the outer edges. For
nontrivial solutions, an exact characteristic equation is obtained. The frequency is then
determined by a simple root finder algorithm. The asymptotic form is obtained by expansions
of the Bessel functions in the characteristic equation. For small z ¼ kr [12],
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where g is the Euler constant 0.5772. The algebra can be facilitated by a computer software with
symbolic capabilities, for example Mathematica or Maple.
3. Results

First consider an annular plate where its inner edge is clamped while its outer edge is free (i.e.
CF case). The boundary conditions are

wðbÞ ¼ 0; w0ðbÞ ¼ 0; (4)

Mð1Þ ¼ 0; Vð1Þ ¼ 0: (5)

The characteristic equation is complicated but exact. For small b, the asymptotic expansions of
the n=1 mode give

k �
2

fj ln bj � ð23þ 9nÞ=½8ð3þ nÞ
g1=4
: (6)

The foregoing formula is more accurate than that obtained by Southwell [11]

k �
2

ln bj j
1=4

: (7)

The Poisson ratio ranges from 0.2 for concrete to 0.3 for metals to 0.4 for some polymers.
Adopting the Poisson ratio n ¼ 0:3; Fig. 1 shows the frequency factor k for the n=1 mode rising
sharply from zero, and it gives the fundamental frequency for lower b values. For b=0.2
the fundamental frequency factor is 2.191, 2.194, 2.197 for n ¼ 0:2; 0.3, 0.4, respectively. The
frequency factor changes only marginally with respect to the Poisson ratio. However, the
transition of the fundamental frequency to the n=0 mode is more affected by n due to the small
slope differences as shown in Table 1.
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Fig. 1. Frequencies for the CF case, n ¼ 0:3: Open circle represents the transition location for the fundamental modes.

The dashed line is from Eq. (6) and the dotted line is from Eq. (7).

Table 1

Core radius b and fundamental frequency factor k at mode switching (from n=1 mode to n=0 mode) for CF-annular

plates

n ¼ 0:2 n ¼ 0:3 n ¼ 0:4

b 0.307 0.349 0.409

k 2.558 2.814 3.075
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Next, we consider the annular plate with its inner edge simply supported, while its outer edge is
free (i.e. SF case). The boundary conditions are given by

wðbÞ ¼ 0; MðbÞ ¼ 0 (8)

and Eqs. (5). Asymptotic expansion of the characteristic equation for small values of core radius b
for the n=1 mode gives

k �
2

f ln bj j þ ð1þ 22nþ 9n2Þ=½8ð3� 2n� n2Þ
g1=4
: (9)

Fig. 2 shows the fundamental frequency factor also rising singularly form zero. The transition
to the n=0 mode is given in Table 2.
Fig. 3 shows the results for annular plates with the inner edge simply supported, while the outer

edge is clamped (i.e. SC case). For small b, the fundamental frequency is also governed by the
n=1 mode. When b=0, its value is 4.611, independent of n; and is obtained from the first root of
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Fig. 2. Frequencies for the SF case, n ¼ 0:3: The open circle represents the transition location. The dashed line is from

Eq. (9).

Table 2

Core radius b and fundamental frequency factor k at mode switching (from n=1 mode to n=0 mode) for SF-annular

plates

n ¼ 0:2 n ¼ 0:3 n ¼ 0:4

b 0.293 0.313 0.332

k 1.869 1.856 1.832
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the equation

J1ðkÞ½I0ðkÞ þ I2ðkÞ
 � I1ðkÞ½J0ðkÞ � J2ðkÞ
 ¼ 0: (10)

As b increases, the frequency k rises singularly as j ln bj�1 and crosses the n=0 mode at a
location given in Table 3.
Notice the transition point also gives a local maximum for fundamental frequency.
In Fig. 4, the results for annular plates with both edges clamped (i.e. CC case) are presented.

The n=0 mode rises from 4.611, governed by Eq. (10). The transition point is at b=0.0132, and
k=4.769 independent of the Poisson ratio.
Fig. 5 shows the results for annular plates with both edges simply supported (i.e. the SS case).

At b=0 the n=1 mode rises as j ln bj�1 from the first root of the equation

f2n½I0ðkÞ þ I2ðkÞ
 þ kI3ðkÞgJ1ðkÞ � f2n½J0ðkÞ � J2ðkÞ
 � k½6J1ðkÞ � J3ðkÞ
gI1ðkÞ ¼ 0: (11)

The fundamental frequencies are 3.711, 3.728 and 3.745 for n ¼ 0:2; 0.3, 0.4, respectively. The
transition core radii and the corresponding frequency factors are given in Table 4.
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Fig. 3. Frequencies for the SC case, n ¼ 0:3: The open circle represents the transition location. The solid circle is the

fundamental frequency at b=0.

Table 3

Core radius b and fundamental frequency factor k at mode switching (from n=1 mode to n=0 mode) for SC-annular

plates

n ¼ 0:2 n ¼ 0:3 n ¼ 0:4

b 0.0036 0.0042 0.0048

k 4.763 4.762 4.758

Fig. 4. Frequencies for the CC case. The open circle represents the transition location. The solid circle is the

fundamental frequency at b=0.
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Fig. 5. Frequencies for the SS case, n ¼ 0:3: The open circle represents the transition location. The solid circle is the

fundamental frequency at b=0.

Table 4

Core radius b and fundamental frequency factor k at mode switching (from n=1 mode to n=0 mode) for SS-annular

plates

n ¼ 0:2 n ¼ 0:3 n ¼ 0:4

b 0.0011 0.0013 0.0018

k 3.831 3.848 3.864
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Fig. 6 shows the results for annular plates with inner edge clamped, while the outer edge simply
supported (i.e. CS case). The start of the n=1 mode is same as the SS annular plate case, but the
transition is much closer to b=0 as shown in Table 5.
When the inner edge is free, the small core has little effect on the frequency, which is the

frequency of the full circular plate. Thus at b=0, the fundamental frequency factor for the FC
case is 3.196 for all n values, which is obtained from the n=0 mode and

I1ðkÞJ0ðkÞ þ I0ðkÞJ1ðkÞ ¼ 0: (12)

For the FS case the characteristic equation for the axisymmetric mode (i.e. n=0) is

½2nI1ðkÞ þ kI2ðkÞ
J0ðkÞ þ ½2kJ0ðkÞ þ 2nJ1ðkÞ � kJ2ðkÞ
I0ðkÞ ¼ 0: (13)

The values of the fundamental frequency factor k at b=0 is 2.187, 2.222, 2.253 for n ¼ 0:2; 0.3,
0.4, respectively.
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Fig. 6. Frequencies for the CS case, n ¼ 0:3: The open circle represents the transition location. The solid circle is the

fundamental frequency at b=0.

Table 5

Core radius b and fundamental frequency factor k at mode switching (from n=1 mode to n=0 mode) for CS-annular

plates

n ¼ 0:2 n ¼ 0:3 n ¼ 0:4

b 0.00032 0.00034 0.00036

k 3.831 3.849 3.866
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For the FF case the n=2 mode gives the fundamental frequency of 2.378, 2.315, 2.241 for
n ¼ 0:2; 0.3, 0.4, respectively. Note that F–F annular plates are used in modeling very large,
pontoon-type floating structures and flying disks.
4. Discussions

The fundamental frequencies for annular plates with small core sizes are now determined.
Asymptotic expansion on the exact characteristic equations delineates the singular rise (infinite
slope) of the fundamental frequency when the core size is close to zero. These properties cannot be
obtained by any numerical solution of the vibration equations due to severe scaling problems for
minute cores.
Except when the inside boundary is free, the fundamental frequencies are always governed by

the n=1 mode for small b, and the n=0 mode for larger b. Since the frequency for the n=1 mode
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rises singularly, the decrease in fundamental frequency may be quite significant for small cores.
Our figures and tables would be useful in the design of vibrating annular plates with small cores.
For b=0, the fundamental frequency is zero for CF and SF cases. This represents a rigid

rotation about a diameter. Our approximate solutions given by Eqs. (6) and (9) are quite accurate
for bo0.1. For the SC, CC, SS, CS cases the fundamental frequencies are finite when b=0 but the
rise is still singular. Singular rise is absent for the FC, FS, FF cases.
The transition from n=1 to 0 modes may occur at very small b values in some cases. In order

that the plate equations remain valid, the thickness should be much less than the core radius. For
example, consider a plate of outer diameter 1m. If b=0.01 the core has a diameter of 1 cm. For
the thin plate equation to be valid the plate thickness should be less than 1mm.
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